Difference between revisions of "Literature"
From MAGEEC
(Created page with "This page lists literature and related work that may be relevant to the project. =Machine Learning= '''MILEPOST''' :Fursin, G., Kashnikov, Y., Memon, A. W., Chamski, Z., Tem...") |
(→Machine Learning) |
||
Line 5: | Line 5: | ||
'''MILEPOST''' | '''MILEPOST''' | ||
:Fursin, G., Kashnikov, Y., Memon, A. W., Chamski, Z., Temam, O., Namolaru, M., Yom-Tov, E., et al. (2011). ''Milepost GCC: machine learning enabled self-tuning compiler.'' International Journal of Parallel Programming, 1–31. | :Fursin, G., Kashnikov, Y., Memon, A. W., Chamski, Z., Temam, O., Namolaru, M., Yom-Tov, E., et al. (2011). ''Milepost GCC: machine learning enabled self-tuning compiler.'' International Journal of Parallel Programming, 1–31. | ||
+ | |||
+ | |||
+ | '''Mitigating the compiler optimization phase-ordering problem using machine learning.''' | ||
+ | :Kulkarni, S., & Cavazos, J. (2012). ''Mitigating the compiler optimization phase-ordering problem using machine learning.'' Proceedings of the ACM international conference on Object oriented programming systems languages and applications, 1–16. Retrieved from http://dl.acm.org/citation.cfm?id=2384616.2384628 | ||
+ | |||
+ | |||
+ | '''Rapidly Selecting Good Compiler Optimizations using Performance Counters.''' | ||
+ | :Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O’Boyle, M. F. P., & Temam, O. (2007). ''Rapidly Selecting Good Compiler Optimizations using Performance Counters.'' International Symposium on Code Generation and Optimization (CGO’07) (pp. 185–197). IEEE. doi:10.1109/CGO.2007.32 | ||
+ | |||
+ | |||
+ | '''Automatic selection of GCC optimization options using a gene weighted genetic algorithm.''' | ||
+ | :Lin, S., Chang, C., & Lin, N. (2008). ''Automatic selection of GCC optimization options using a gene weighted genetic algorithm.'' Computer Systems Architecture Conference, 2008. ACSAC 2008. 13th Asia-Pacific, 1–8. doi:10.1109/APCSAC.2008.4625477 | ||
==Feature Selection== | ==Feature Selection== | ||
MILEPOST Feature list [http://ctuning.org/wiki/index.php/CTools:MilepostGCC:StaticFeatures:MILEPOST_V2.1] | MILEPOST Feature list [http://ctuning.org/wiki/index.php/CTools:MilepostGCC:StaticFeatures:MILEPOST_V2.1] |
Revision as of 12:40, 22 March 2013
This page lists literature and related work that may be relevant to the project.
Machine Learning
MILEPOST
- Fursin, G., Kashnikov, Y., Memon, A. W., Chamski, Z., Temam, O., Namolaru, M., Yom-Tov, E., et al. (2011). Milepost GCC: machine learning enabled self-tuning compiler. International Journal of Parallel Programming, 1–31.
Mitigating the compiler optimization phase-ordering problem using machine learning.
- Kulkarni, S., & Cavazos, J. (2012). Mitigating the compiler optimization phase-ordering problem using machine learning. Proceedings of the ACM international conference on Object oriented programming systems languages and applications, 1–16. Retrieved from http://dl.acm.org/citation.cfm?id=2384616.2384628
Rapidly Selecting Good Compiler Optimizations using Performance Counters.
- Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O’Boyle, M. F. P., & Temam, O. (2007). Rapidly Selecting Good Compiler Optimizations using Performance Counters. International Symposium on Code Generation and Optimization (CGO’07) (pp. 185–197). IEEE. doi:10.1109/CGO.2007.32
Automatic selection of GCC optimization options using a gene weighted genetic algorithm.
- Lin, S., Chang, C., & Lin, N. (2008). Automatic selection of GCC optimization options using a gene weighted genetic algorithm. Computer Systems Architecture Conference, 2008. ACSAC 2008. 13th Asia-Pacific, 1–8. doi:10.1109/APCSAC.2008.4625477
Feature Selection
MILEPOST Feature list [1]