
Software approaches and optimisations for energy

efficiency in embedded systems

James Pallister

Supervisor: Kerstin Eder
Second supervisor: Simon Hollis

November 29, 2013

Abstract

It is increasingly important to consider the energy consumption of software with the hard-
ware it is running on. A large amount of software already exists for embedded platforms
and the easiest method a developer can employ to increase their code’s performance is by
upgrading their compiler. To retain the same advantage for energy consumption, it is nec-
essary to develop techniques and optimisations that the compiler can use to improve the
code’s energy efficiency in an automated way.

This report considers a variety of techniques that the compiler can use to reduce energy
consumption, such as optimisation selection and ordering, novel optimisations for energy,
superoptimisation, and specific hardware trade-offs (including RAM vs. flash). It is observed
that each individual technique can reduce energy consumption and the argument is made
that when all techniques are combined, a significant amount of energy could be saved by the
compiler.

2

PhD 1st Year Report James Pallister

Contents

1 Introduction 5

2 Related work 7
2.1 Architectural modifications . 7
2.2 Compiler optimisations . 8

2.2.1 Optimizing for energy . 8
2.2.2 Selection . 9
2.2.3 Ordering . 10
2.2.4 Time-energy correlation . 10
2.2.5 Superoptimisation . 11

2.3 Energy modelling . 12
2.3.1 Low-level energy models . 12

3 Contributions 14
3.1 Existing compiler optimisations . 14

3.1.1 Optimisation analysis . 14
3.1.2 Optimisation selection . 20
3.1.3 Ordering of compiler optimisations . 20

3.2 Memory alignment . 21
3.3 Superoptimisation . 23

3.3.1 Pruning the search space . 25
3.4 Benchmarking energy consumption . 30

3.4.1 Benchmark selection . 31
3.4.2 Benchmark analysis . 32
3.4.3 Case study . 33

4 Future work 35
4.1 Loop alignment in embedded devices . 35
4.2 Effect of different memory technologies . 35
4.3 Vector unit exploration . 35
4.4 Other ideas . 35

5 Conclusion 37

Own Publications 38

References 39

A PhD plan 43

4 Contents

B Activities 44
B.1 Presentations given and workshops attended 45
B.2 Lab demonstrating . 46
B.3 Projects . 46

PhD 1st Year Report James Pallister

1

Introduction

Energy consumption is a primary design constraint in many embedded platforms, with
battery life being one of the most important characteristics of the device. There are many
hardware approaches to reducing the energy consumption at the silicon level, however, it is
the software running on the hardware that ultimately controls the energy consumption.

There are two sources of energy consumption in a processor: static and dynamic power
dissipation. The dynamic power is dependent on how often the transistors change state
— usually a result of software. For example, a memory load instruction will cause the a
value to be put on the address line, and associated control logic to toggle. The static power
dissipation is leakage through each transistor: it occurs whether or not the transistor flips.
This is more difficult to control from software — the only way to reduce it is either to run
the software in less time and switch the transistor off, or change the operating voltage of
the transistor.

The software defines which parts of the processor will be powered and which activities
they will perform. This leads to the need for software approaches to reduce the energy
consumption of the underlying hardware. The invasiveness of a software technique greatly
affects its further re-use and take-up by industry. In this respect it is more reasonable to
expect a developer to recompile their program with an energy efficient compiler than it is
to expect them to completely re-architecture their existing application to follow an energy
efficient paradigm. For this reason, compilers are well placed to have a wide impact on a
large amount of software. E.g. an existing software library only requires recompilation to
become X% more energy efficient. This report focuses on methods that the compiler can
employ to reduce the energy consumption of the code being compiled.

Existing compiler optimisations can be effective at reducing energy consumption, how-
ever, the majority of this saving comes from the performance boost that these optimisations
also bring. The performance boost reduces the running time, resulting in static power dissi-
pation for a shorter amount of time. This also occurs frequently because of fewer instructions
executed: less work to do results in lower energy consumption. The way that compiler opti-
misations combine is non-trivial with extreme differences in performance just from differently
ordering optimisations. The selection and ordering of compiler optimisations will therefore
have a large effect on the energy consumption. This report presents initial exploration into
the selection and ordering of existing compiler optimisations.

While the majority of existing compiler optimisations improve energy consumption in
proportion to execution time, it is possible to develop new optimisations that purely target
energy consumption. Some of these exploit the fact that the source of dynamic energy
consumption is the amount of bit-flips occurring in the pipeline, e.g. replacing x = y × 2
with x = y+ y would reduce energy consumption if a multiply causes more bits to flip (as is

6 Introduction

often the case). Some of these optimisations could be found by superoptimisation — a brute
force search through possible instruction sequences until the optimal instruction sequence is
found. Other optimisations for energy include exploiting resources in the hardware platform.
If a hardware peripheral is available to do CRC calculations, this is likely much more energy
efficient than the software equivalent. Several ideas for new compiler optimisations are
presented in this report, along with the current progress on developing a superoptimiser for
energy.

Once new optimisations have been developed, they must be combined in the correct order
and with the correct other optimisations to achieve maximal efficacy. This is a non-trivial
task, and it is currently unknown how several optimisations for energy would interact with
each other.

In future, compilers will not be just optimising existing code. They will be able to take a
holistic view of the entire platform, selecting the best optimisations and variants of libraries
to minimise energy consumption. This could possibly utilise JIT compilation, where a code
trace is noticed to be energy inefficient at runtime, and recompiled on the fly to produce a
specific energy optimal version. The compiler, combined with runtime and static analysis
will allow a system to dynamically optimise itself, simultaneously controlling the memory
hierarchy, hardware peripherals, the processor’s frequency and voltage to balance the trade-
off between performance and energy consumption. The techniques detailed in this report are
a step towards the compiler being able to optimise for energy and consider platform specific
information to reduce energy consumption.

The next chapter of this report covers related work in this area. Then, follows contri-
butions made to various areas, including ongoing work. Chapter 4 covers areas and ideas
which could be developed in the future. Then, the final chapter presents the conclusion of
this report, followed by my publications. The appendices list a plan for the remainder of my
PhD, followed by a list of activities and events attended over the last year.

PhD 1st Year Report James Pallister

2

Related work

This chapter discusses work which has attempted to reduce energy consumption by using
some form of software component. This sometimes takes the form of compiler optimisations
targeting energy consumption, or transformations that can be made to the source code. This
allows more efficient usage of the platform’s resources and peripherals. Other techniques to
reduce energy consumption have exploited hardware-software codesign, where specialised
or efficient hardware components are designed along with the software required to exploit
them.

This section first discusses architectural modifications that can be made to processor
to enable energy-efficient execution. The following section discusses compiler optimisations
— optimisations specifically for energy, as well as selection and ordering of existing com-
piler optimisations. The final section discusses how models of energy consumption can be
constructed.

2.1 Architectural modifications

This section discusses modifications that can be made to a processor’s architecture to reduce
energy consumption. Many of these modifications also require software support to function
correctly, however some are already present in many processors, such as scratch pad memory.

‘Bus invert coding’ is a technique which does not require software support [1]. This
modification relies on the fact the it costs more energy to drive a high capacitance bus line
than to have several more transistors to optimise the encoding. This technique adds an
additional line to the bus, which indicates that the rest of the lines are inverted. This can
minimise the average number of transitions on the bus by up to 25%.

Another method of reducing the amount of bit flips in a processor is to correctly choose
the instruction encodings. Woo et al. [2] reduce the switching between op-codes for the
MIPS architecture. The op-code switching is reduced 40–60%, however there is no analysis
of the amount of reduction in energy this may lead to when taken in the context of a whole
system.

Scratch pad memory has be explored extensively, as optimal placement of code and data
items in this memory will reduce both execution time and energy consumption [3]. Scratch
pad memories are also typically more efficient than cache’s due the lack of extra logic needed
by caches — the difficulty is that they must be controlled by software. In [4] code and data
objects are moved by the compiler into scratch pad memory, and found to have a 43% saving
in energy compared to an equivalent sized cache. This has also been explored in the case of
a multi-task system [5].

8 Related work

Register file partitioning has been shown to reduce energy consumption [6]. Guan et
al. noticed that for some embedded processors only 25% of the registers were used for the
majority of the time. This led to a modification of the register file, where part of it could be
disabled and put into a low power state. This was combined with an analysis to optimally
choose which values should go into the hot and cold regions of the register file. Overall,
roughly 50% of the register file power saving could be achieved with 5% slow down.

The majority of processors do not expose energy consumption characteristics to the pro-
grammer. Asanovic et al. [7] describe how additional instructions could be created which
allow more energy-efficient operations to be executed, such as bypassing certain cache op-
erations when data is known to be in cache. Energy expensive operations, such as shifting
could also have more specific but energy efficient versions for frequent operands, trading sili-
con area for energy efficiency. Another development in this area exposes the bypass network
between pipeline stages to the compiler, allowing sequences of instructions to be constructed
that do not use the register file [8].

2.2 Compiler optimisations

This section discusses how compiler optimisations can be used to reduce the energy con-
sumption of embedded systems.

2.2.1 Optimizing for energy

Many previous studies look at how to utilise existing optimisations to target energy consump-
tion. However, all of these optimisations were written with the aim of reducing execution
time, not energy consumption. Several other techniques have been proposed to develop
optimisations that specifically target energy consumption.

An analysis of the techniques the compiler can perform to optimise for energy was carried
out by Tiwari, Malik and Wolfe [9]. They identified several possible techniques that compilers
could use to reduce the energy consumption of programs. They were:

• Reorder instructions to reduce switching.

• Reduce switching on address lines.

• Reduce memory accesses.

• Improve cache hits.

• Improve page hits.

The last three will also normally increase performance as well as reduce energy.
Several novel types of compiler optimisations have been proposed. Seth et al. [10] ex-

plored the possibility of using the compiler to insert idle instructions automatically, in-
creasing the execution time up to a set limit.

Source code transformations and the use of the SIMD pipeline has been shown to have an
effect on energy consumption and power dissipation in [11]. This study found that reordering
array declarations could reduce the energy consumption, althoughan explanation of why this
occurred was not given. Also found was that software loop pipelining had a huge effect on
power dissipation, especially when the code was vectorised to use the SIMD pipelines.

Scheduling instructions to minimise the inter-instruction energy cost was evaluated to be
a moderately effective method to reduce a program’s energy consumption. Parikh et al. [12]
examine six different instruction scheduling methods including, random, pure performance-
based, pure energy-based and combinations of performance and energy. They find only

PhD 1st Year Report James Pallister

Compiler optimisations 9

small differences in performance when these algorithms are applied. However, large savings
in energy consumption are seen, provided the scheduling algorithm considers the energy cost
of the instructions. There was not a large difference seen between the energy-considering
algorithms, however random and pure performance consumed larger amounts of energy.

Exploiting differences in energy consumption between other function units has been
suggested in [13], where it is noted that strength reduction may use a more efficient shifter
rather than a power hungry multiplier. Other techniques have also been employed to reduce
the energy cost of going to memory by accounting for the bit-width required by the variable
being accessed [14].

Dynamic Voltage and Frequency Scaling (DVFS) can be used to change the amount of
power and the time taken for operations to execute. This exploits the fact that P ∝ V 2,
where P is the power dissipation of the processor and V is the voltage the processor is
currently using. However, by lowing the voltage, the transistors take longer to stabilise,
and so the clock frequency must also be reduced. This leads to code being able to either
execute slow and efficiently or fast and power-hungry. This effect has been exploited to
reduce energy consumption while still meeting some timing constraints [15]. This allows
larger energy savings — up to 70% — if timing constraints can be relaxed, or lower savings
if an tighter schedule needs to be met.

2.2.2 Selection

Iterative compilation is used to explore the tile size and unroll factor parameters to the
compiler in [16]. The effect on performance, energy and the energy delay product is shown
to have a semi-regular pattern. They conclude that iterative compilation is a promising
approach that may reduce energy when used on a larger number of loop transformations
and combinations of optimisations.

Pan et al. [17] explore several approaches to optimisation selection (for performance),
and propose a new method based on several state of the art techniques. Batch Elimina-
tion executions the application with optimisations individually disabled, then disabling all
optimisations which decreased the performance. However, this approach does not always
perform well, since it does not consider the interactions between optimisations. Another
algorithm explored tries to iteratively find optimisations to eliminate, repeating the process
until no optimisations with negative impacts are left.

These two algorithms are combined, attempting to iteratively eliminate multiple opti-
misations and achieving a lower number of tests required than iterative elimination, while
obtaining a similar performance. However, as these algorithms were fairly restrictive in
terms of the set of optimisations they would consider, performance increases of only 5–10%
were seen.

Several studies explore the optimisation space in systematic way, allowing optimisation
selection and general conclusions about the nature of the space to be made.

Chow et al. [18] take the approach of using fractional factorial design to choose a subset
of tests to explore the effect of nine optimisations on an application’s performance. Using
this method, the number of runs was reduced to 32, instead of 512, allowing acceptable
run times. Using the results, the set of optimisations was able to be modified, selecting a
set which improved the performance over naively selecting every optimisation. A further
conclusion of this study was that examining optimisation individually was a poor metric of
how the optimisation would perform when combined with other optimisations.

Fractional factorial design [19] was also applied iteratively to select the most effective
optimisation at reducing energy, one at a time [20]. A statistical test was used to choose

James Pallister PhD 1st Year Report

10 Related work

the optimisation which reduced the energy consumption of the benchmark the most, while
using fractional factorial design minimised the number of runs that needed to be performed.
Using this technique they managed to reduce the energy consumption by up to 15% over
the highest optimisation level. This study used a larger range of optimisations than most,
exploring 31 different optimisations.

The majority of studies conclude that the optimisation selection space is very difficult to
explore in a way that allows a good set of optimisations to be chosen. Several papers have
tackled this by using machine learning to generate a set of optimisations.

Milepost [21] used machine learning to select a set of optimisations to apply to a bench-
mark based on static features of the benchmark. This involved a training phase, where sets
of optimisations were applied to benchmarks and stored in a database so that the compiler
could later make predictions when given a new benchmark. This allowed the compiler to
achieve both code size and performance improvements without having to compile and test
the benchmark iteratively.

Similarly to the MilePost GCC study, Cavazos et al. [22] used features of the benchmark
to predict what optimisations would be beneficial. However, dynamic features were used
in addition to statically analysing the benchmark, providing the compiler with runtime
feedback on how effective the optimisations were. To gather this data, hardware counters
were used with the paper present which particular types of counters were found to be most
informative. They were able to achieve a 17% improvement in performance with only 2
additional runs of the benchmark.

2.2.3 Ordering

Optimisation selection has been shown to both increase performance and decrease energy
consumption to a moderate degree. However, by considering the ordering of optimisations
much greater gains can be gained.

No studies have focused on the effect of optimisation ordering on energy usage, however
this area has been explored for performance. A review of heuristics used to explore this larger
space has been undertaken in [23]. This study looked at hill-climbing, simulated annealing,
genetic algorithms, random search and N-lookahead. A major finding is that the search
space is highly irregular, with a few global minima, and that increasing the length of the
optimisation sequence increases the number of global minima in the space.

As with optimisation selection, machine learning has also been used in the ordering of
optimisations [24] based on features from the application being compiled. This approach
used Neuro-Evolution for Augmenting Topologies (NEAT) [25] to learn the structure of an
artificial neural network that would recognise a program’s features and identify the next
optimisation pass that should be run. A speed up of up to 20% over the best optimisation
level was achieved.

2.2.4 Time-energy correlation

There have been many studies that look at the effect of optimisations on execution time [26,
27], and several studies suggesting that execution time can be used as a proxy for energy
usage [28, 29].

The topic of performance and energy being highly correlated is addressed in [30]. This
work explored several different overall optimisation levels, as well as four specific optimi-
sations, using the Wattch simulator [31] to estimate energy results. However, the specific
optimisations were all applied individually on top of the first optimisation level, without

PhD 1st Year Report James Pallister

Compiler optimisations 11

exploring any possible interactions between the optimisations. The main conclusion drawn
from this study was that most optimisations reduce the number of instructions executed,
hence reducing energy consumption and execution time simultaneously.

Of the studies that look at individual optimisations and their effects on energy or power,
most focus on only a few optimisations in isolation and few consider multiple platforms
with different architectural features. Commonly explored optimisations, such as loop un-
rolling [32], loop fusion [33], function inlining [34] and instruction scheduling [35], have been
examined extensively for different platforms using both simulators and hardware measure-
ments.

2.2.5 Superoptimisation

Superoptimisation is a technique for producing perfectly optimal code, by doing a brute-force
search of every possible instruction sequence. As this is impractical for longer sequences,
ways to speed up this search have been developed and methods of quickly searching the
space have been attempted.

Superoptimisation was first introduced in [36] where a superoptimiser was used to opti-
mise short functions on a Motorola processor. This initial study was limited to only creating
sequences consisting of register to register data processing instructions, with no memory
accesses or branches. However, interesting and unexpected sequences were found that had
not been considered before were found.

The instruction sequences were tested by running them with some input vectors on a
Motorola processor. If the sequences passed enough test cases, it was considered correct,
and then verified by hand to ensure it was correct for all possible inputs.

Source Näıve Superoptimised

if(a < b)

c++;

cmp eax, ebx

jge L1

add eax, #1

L1:

...

subl eax, ebx

adcl eax, #0

Once the superoptimizer had found shorter sequences for many different types of these
branches, the resulting sequences were inserted into GCC as peephole optimizations. This
meant that the search did not need to be repeated during the compilation of any subsequent
application.

A different approach to superoptimisation was taken by Denali [37]. This study attempted
to use a solver with a set of rules to produce optimal programs. The rules specified each
instruction’s capabilities and the solver attempted to find the most optimal combination of
instructions for a given function. However, few results were ever presented from this attempt,
and the quality of the resulting sequence depended heavily on the quality and completeness
of the rule set.

Gulwani et al. [38] present techniques for creating a program from a specification of how
the program should behave. This technique is similar to the Denali superoptimizer, in that
a set of logic rules describing components available for the synthesis and the functional spec-
ification is created, then given to a SMT solver to be solved in less than exponential time.
This work focuses on creating loop-free constructs, due to difficulties in formulating the
constraints for programs with loops. The process is semi-interactive, with the use providing
input as to which components are to be available during the synthesis. This has the ad-
vantage of restricting the number of items needed to be considered, but limits the potential

James Pallister PhD 1st Year Report

12 Related work

for unique program formulations. By encoding the operations in this way, the system often
produced good results, but made no guarantee of optimality.

The concept of reusing the discovered code sequences was extended by Bansal et al. [39].
This study harvested a much larger number of target sequences from a benchmark suite, then
used a superoptimizer on all of these sequences. To avoid repeating the superoptimization
process for each input sequence, the sequence was ‘fingerprinted’ by evaluating it for some
specific test data. When the superoptimizer generated a instruction sequence, this code
could be tested with the same input, and then its output matched to fingerprinted target
sequences. By using this technique, the superoptimizer could be used for many different
input codes simultaneously.

If matching sequences were found, these were then verified to be equivalent using a SMT
solver and if this check passed, entered into an optimization database. This database was
used to implement a peephole pass in a compiler and could be created offline (with up
to instruction sequences of length 4) and then the peephole pass only needed to look up
sequences in the database, greatly decreasing compile times.

Using this peephole pass with the generated optimization database resulted in code being
iteratively improved as the pass was run multiple times, eventually achieving a performance
similar to that when all other optimizations were enabled.

Stochastic superoptimisation is a technique explored in [40]. An intelligent hill climbing
method was used to explore different instruction sequences, with feedback on how close the
result was to the target directing the search. By exploring the space in this way, much
longer instruction sequences (up to 16 instructions) could be considered. This lead to large
performance increases being found over already heavily optimised code.

So far superoptimisation has not be considered for energy consumption — there is
the possibility that if targeted for energy consumption many interesting and unexpectedly
energy-efficient codes sequences could be found.

2.3 Energy modelling

Energy modelling is important because it allows software’s energy consumption to be esti-
mated without taking physical measurements of the hardware. This allows a faster design
cycle and the ability to optimise for power without having the hardware to test on.

2.3.1 Low-level energy models

One of the first studies to consider energy consumption of software was performed by Tiwari
et al. [41]. This created a model where each instruction was given a base energy cost, and each
pair of instructions an inter-instruction effect. The inter-instruction effect was included as a
result of bits in the processor’s pipeline being switched as the next instruction was executed.

This allows the energy of a full program, p to be found:

Ep =
∑
i

(Bi ×Ni) +
∑
i,j

(Oi,j ×Ni,j) +
∑
k

Ek, (2.1)

where Bi is the base cost of instruction i, Ni is the number of times i is executed in p, Oi,j

is the inter-instruction cost from i to j, and Ni,j is the number of times this interaction occurs
in p. This model requires that energy figures for all instructions and pairs of instructions
are found, which can be particularly challenging with some types of processor architecture.
The final term in the model uses the parameter Ek to define ‘other effects’ not captured by

PhD 1st Year Report James Pallister

Energy modelling 13

the model. This would include sources of energy consumption that are not directly linked
to the currently executing instruction, such as periperhals and cache activity.

Tiwari’s model is extended in [42] to model the instruction and data energy cost of the
processor by considering the number of ‘bit flips’ between successive instructions. This model
is significant because it takes into account the energy cost of the data the instructions are
executing on. However, this model also suffers from the difficult of having many parameters
which require difficult to measure empirical values.

Wattch [31] provides a generic framework for energy modelling, compiler optimisation
testing and hardware design space exploration. This is enabled by modelling various hard-
ware components at different levels, and allowing them to be combined into a full model of
a processor. This processor is currently for non-superscalar processors, however other work
has attempted to model superscalar processors [43]. The Wattch simulator is designed to
allow easy energy measurements while exploring architectural configurations and is estab-
lished at being within 10% of an industry layout-level power tool. However, Wattch does
not model every hardware component in the processor, which makes it difficult to be certain
about the total energy consumption of the processor.

SimplePower [44] is another simulator that has been used to explore the energy con-
sumption of the software running on a processor. This simulator targets a five stage RISC
pipeline, with energy consumption estimates based on the number of transitions on bus
signal lines as well as various other components.

Various other models have been created to simulate power dissipation of the processor,
including complex instruction level models [42], function-level models [45] and hybrids of
these [46]. However, these all suffer the drawback that some energy consumption effects may
not be modelled, potentially skewing the results.

James Pallister PhD 1st Year Report

3

Contributions

This section details published and unpublished work I have done over the last year.

3.1 Existing compiler optimisations

3.1.1 Optimisation analysis

This section discusses an analysis made of how optimisation selection affect energy consump-
tion, across several different platforms and a set of benchmarks. As part of this study, a set of
benchmarks was developed to expose the energy consumption characteristics of processors.
This benchmark suite is detailed in Section 3.4.

The following hypotheses have been investigated, resulting in [A]:

1. The time and energy required for a computation are always proportional to one an-
other. Examples were found where energy and time are not correlated and investigated.

2. There exists a set of compiler optimisations that gives a lower energy consumption
than the predefined optimisation levels.

3. It is possible to search the compiler optimisation space in an efficient and systematic
manner, to assign each optimisation an overall effectiveness.

4. There is no universally good optimisation across multiple benchmarks and platforms.

These hypotheses were explored for five different processors: ARM Cortex-M0, ARM
Cortex-M3, ARM Cortex-A8, XMOS L1 and Adapteva Epiphany. This allows comparisons
of the optimisations effectiveness across multiple different processor architectures and an
exploration of how this affects energy consumption. The following contributions are made:

• The use of fractional factorial design to analyse a previously intractable optimisation
space of GCC’s optimisation options.

• Analysis of relative importance of each optimisation across multiple benchmarks and
platforms.

• The answers to the previously given hypotheses.

• Commentary on how these techniques and results can be used by application developers
and compiler writers.

Time and energy

The following section addresses the first hypothesis, and show that energy consumption and
execution time are proportional to each other across all the benchmarks and platforms. A

Existing compiler optimisations 15

2dfir

blowfish

crc32

cubic

dijkstra

fdct

float_matmult

int_matmult

rijndael

sha

cortex-m0 cortex-m3 cortex-a8 xmos epiphany

O0 O1 O2 O3 O4 Os
Optimization Level

0.00

0.25

0.50

0.75

1.00

1.25

1.50

P
e
rf

o
rm

a
n
c
e
 r

e
la

ti
v
e
 t

o
 O

0

Overall Optimization Levels for All Platform and Benchmark Combinations

Average power

Execution time

Energy consumed

Figure 3.1: Energy, time and power results for benchmark-platform combinations. Optimi-
sation levels O0 to O4. O4 is O3 with link-time optimisation. The last point is Os — optimise
for space. Some results are unavailable for when the compiler crashed while producing the
output binary.

high level overview of each platform and benchmark for the different optimisation levels is
given in Fig. 3.1. This figure shows a line graph for each combination, displaying the effect
of the broad optimisation levels O1, O2, O3, O4 (defined as O3 with link time optimisation)
and Os (optimise for space) on time, energy and average power when compared to the same
program with all optimisations disabled.

For the Cortex-M0, very little difference between energy and time is seen due to it being
the simplest processor tested, it has a three stage pipeline without forwarding logic. The
pipeline behaviour is simple, only stalling if it encounters a load or a branch, thus it is
not sensitive to specific code sequences. The Cortex-M3 exhibits very similar behaviour,
with some very slight differences between energy and time. The micro-architecture in this
processor is more complex, featuring branch speculation and a larger instruction set [47].

The XMOS processor has a four stage pipeline, similar to the Cortex-M3 in complexity
and performance. It should also be noted that the compiler for the XMOS processor uses
an LLVM backend [48] for code generation, featuring different optimisations. Due to this
the result set for this processor is not as extensive as the other four, but is still broadly
comparable.

The Epiphany processor also sees a large correlation between the energy consumption

James Pallister PhD 1st Year Report

16 Contributions

-f
g
u
e
s
s
-b

ra
n
c
h
-p

ro
b
a
b
il
it

y
-f

tr
e
e
-d

o
m

in
a
to

r-
o
p
ts

-f
tr

e
e
-c

h
-f

if
-c

o
n
v
e
rs

io
n

-f
a
u
to

-i
n
c
-d

e
c

-f
if
-c

o
n
v
e
rs

io
n
2

-f
tr

e
e
-r

e
a
s
s
o
c

-f
ip

a
-r

e
fe

re
n
c
e

-f
tr

e
e
-c

o
p
y
-p

ro
p

-f
tr

e
e
-b

it
-c

c
p

-f
m

e
rg

e
-c

o
n
s
ta

n
ts

-f
tr

e
e
-f

re
-f

m
o
v
e
-l

o
o
p
-i
n
v
a
ri

a
n
ts

-f
in

li
n
e
-f

u
n
c
ti

o
n
s
-c

a
ll
e
d
-o

n
c
e

-f
d
e
la

y
e
d
-b

ra
n
c
h

-f
tr

e
e
-s

in
k

-f
s
h
ri

n
k
-w

ra
p

-f
s
p
li
t-

w
id

e
-t

y
p
e
s

-f
tr

e
e
-c

o
p
y
re

n
a
m

e
-f

tr
e
e
-p

ta
-f

tr
e
e
-d

s
e

-f
ip

a
-p

ro
fi
le

-f
c
o
m

b
in

e
-s

ta
c
k
-a

d
ju

s
tm

e
n
ts

-f
ip

a
-p

u
re

-c
o
n
s
t

-f
tr

e
e
-s

ra
-f

d
c
e

-f
tr

e
e
-d

c
e

-f
tr

e
e
-c

c
p

-f
tr

e
e
-p

h
ip

ro
p

-f
d
e
fe

r-
p
o
p

-f
c
o
m

p
a
re

-e
li
m

-f
o
m

it
-f

ra
m

e
-p

o
in

te
r

-f
d
s
e

-f
c
p
ro

p
-r

e
g
is

te
rs

-f
tr

e
e
-l
o
o
p
-o

p
ti

m
iz

e
-f

tr
e
e
-t

e
r

-f
tr

e
e
-f

o
rw

p
ro

p

-f
p
e
e
p
h
o
le

2
-f

c
ro

s
s
ju

m
p
in

g
-f

tr
e
e
-v

rp
-f

re
ru

n
-c

s
e
-a

ft
e
r-

lo
o
p

-f
d
e
le

te
-n

u
ll
-p

o
in

te
r-

c
h
e
c
k
s

-f
s
c
h
e
d
u
le

-i
n
s
n
s
2

-f
s
c
h
e
d
-i
n
te

rb
lo

c
k

-f
tr

e
e
-b

u
il
ti

n
-c

a
ll
-d

c
e

-f
re

o
rd

e
r-

b
lo

c
k
s

-f
a
li
g
n
-f

u
n
c
ti

o
n
s

-f
s
c
h
e
d
-s

p
e
c

-f
a
li
g
n
-l
a
b
e
ls

-f
c
s
e
-f

o
ll
o
w

-j
u
m

p
s

-f
s
c
h
e
d
u
le

-i
n
s
n
s

-f
d
e
v
ir

tu
a
li
z
e

-f
p
a
rt

ia
l-
in

li
n
in

g
-f

c
a
ll
e
r-

s
a
v
e
s

-f
in

li
n
e
-s

m
a
ll
-f

u
n
c
ti

o
n

s
-f

re
o
rd

e
r-

fu
n
c
ti

o
n
s

-f
e
x
p
e
n
s
iv

e
-o

p
ti

m
iz

a
ti

o
n
s

-f
g
c
s
e

-f
th

re
a
d
-j

u
m

p
s

-f
a
li
g
n
-l
o
o
p
s

-f
tr

e
e
-s

w
it

c
h
-c

o
n
v
e
rs

io
n

-f
ip

a
-s

ra
-f

s
tr

ic
t-

a
li
a
s
in

g
-f

tr
e
e
-t

a
il
-m

e
rg

e
-f

re
g
m

o
v
e

-f
in

d
ir

e
c
t-

in
li
n
in

g
-f

c
s
e
-s

k
ip

-b
lo

c
k
s

-f
s
tr

ic
t-

o
v
e
rf

lo
w

-f
tr

e
e
-p

re
-f

o
p
ti

m
iz

e
-s

ib
li
n
g
-c

a
ll
s

-f
g
c
s
e
-l

m
-f

a
li
g
n
-j
u
m

p
s

-f
ip

a
-c

p8

6

4

2

0

2

4

6

8

10

P
e
rc

e
n
ta

g
e
 t

im
e
/e

n
e
rg

y
,
re

la
ti

v
e
 t

o
 O

1

O1 Flags (-) O2 Flags (+)

Energy

Time

Figure 3.2: Blowfish benchmark on the Cortex-M3 platform. Individual options are enabled
or disabled on top of the O1 optimisation level.

and execution time. There is some divergence when the superscalar core in the processor is
able to dispatch multiple instructions simultaneously. This gives the compiler more potential
for creating advantageous code sequences.

The greatest difference between energy and time was discovered while using the Cortex-
A8. For the majority of the benchmarks the execution time reduces more than the energy.
This is due to multiple instructions being executed simultaneously by the superscalar core,
reducing the amount of time taken but not the energy consumption, as the same total work
is still being done. We infer from this that the amount of pipeline activity has a significant
measurable effect on the energy consumption. The gap is also seen to widen at the O2 level,
due to instruction scheduling being enabled there.

These results support our first hypothesis that time and energy are broadly correlated.
The strongest correlation occurs in the qualitatively ‘simplest’ pipelines. Increasing pipeline
complexity means there are more opportunities for architectural energy saving measures
(clock gating, etc.) making the complex processor’s energy profile more variable and im-
proving the potential for compiler optimisation impact.

Optimisation potential

The second hypothesis to explore is that it was possible to find a set of optimisations that
perform better than the standard optimisation levels. Fig. 3.2 shows each option in O1 and
O2 optimisation levels enabled on top of the flags in O1. By examining the left of the graph,
it can be seen that by disabling -fguess-branch-probability (in this specific run) the
energy decreases by 4% at the expense of some additional run-time. This shows that a set
of optimisations that performs better than the predefined O1 optimisation level.

This conclusion is in line with much of the related work, that has focused on choosing a
set of optimisations which is more optimal than the standard optimisation levels for a given
benchmark.

PhD 1st Year Report James Pallister

Existing compiler optimisations 17

000 001

011

111110

010

100 101

X3

X2

X1

001

111

010

100

X3

X2

X1

Full factorial Fractional factorial

(a) Reducing a 3-factor full factorial design to
a ‘half fraction’ design.

-f
o
m

it
-f

ra
m

e
-p

o
in

te
r

-f
tr

e
e
-f

o
rw

p
ro

p
-f

g
u
e
s
s
-b

ra
n
c
h
-p

ro
b
a
b
il
it

y
-f

tr
e
e
-l

o
o
p
-o

p
ti

m
iz

e
-f

tr
e
e
-c

c
p

-f
d
c
e

-f
if
-c

o
n
v
e
rs

io
n

-f
tr

e
e
-d

c
e

-f
in

li
n
e
-f

u
n
c
ti

o
n
s
-c

a
ll
e
d
-o

n
c
e

-f
d
s
e

-f
m

e
rg

e
-c

o
n
s
ta

n
ts

-f
s
h
ri

n
k
-w

ra
p

-f
d
e
la

y
e
d
-b

ra
n
c
h

-f
ip

a
-p

u
re

-c
o
n
s
t

-f
tr

e
e
-d

o
m

in
a
to

r-
o
p
ts

-f
tr

e
e
-c

h
-f

tr
e
e
-b

it
-c

c
p

-f
ip

a
-r

e
fe

re
n
c
e

-f
if
-c

o
n
v
e
rs

io
n
2

-f
ip

a
-p

ro
fi
le

-f
tr

e
e
-s

ra
-f

a
u
to

-i
n
c
-d

e
c

-f
m

o
v
e
-l

o
o
p
-i

n
v
a
ri

a
n
ts

-f
tr

e
e
-s

in
k

-f
c
p
ro

p
-r

e
g
is

te
rs

-f
c
o
m

p
a
re

-e
li
m

-f
tr

e
e
-p

h
ip

ro
p

-f
c
o
m

b
in

e
-s

ta
c
k
-a

d
ju

s
tm

e
n
ts

-f
tr

e
e
-d

s
e

-f
d
e
fe

r-
p
o
p

-f
tr

e
e
-c

o
p
y
-p

ro
p

-f
s
p
li
t-

w
id

e
-t

y
p
e
s

-f
tr

e
e
-p

ta
-f

tr
e
e
-c

o
p
y
re

n
a
m

e
-f

tr
e
e
-t

e
r

-f
tr

e
e
-r

e
a
s
s
o
c

-f
tr

e
e
-f

re

12

10

8

6

4

2

0

2

P
e
rc

e
n
ta

g
e
 t

im
e
/e

n
e
rg

y
,
re

la
ti

v
e
 t

o
 O

0

Significant

Significant

Energy

Time

(b) Blowfish benchmark on the Cortex-M0
platform. Individual options enabled at O1 are
listed.

Fractional factorial design

This section explores the third hypothesis — a method to systematically explore the opti-
misation space.

GCC has over 150 different options that can be enabled to control optimisations. The
majority of these options are binary — the optimisation pass is either enabled or disabled. To
further complicate matters, an optimisation path may be affected by other passes happening
before it. It is not feasible to test all possible combinations of options, therefore a trade-off
has to be made. One of our main contributions is to deploy fractional factorial design [19]
(FFD) to massively reduce the number of tests to explore the space, whilst still identifying
the options that contribute to run-time and energy. This approach has been explored on
a small scale in [18], where nine optimisations were explored in just 35 tests as opposed
to the 512 required for a full factorial design. It has also been explored by Haneda et al.
in [26], where a fractional factorial design is used to inform the choice of optimizations. We
apply this technique to allow us to analyse and draw conclusions about these large number
of optimizations.

An example full factorial design is shown on the left of Fig. 3.3a. This example shows
three factors with every possible combination enumerated. A fractional factorial design with
the number of tests halved is shown on the right, yet still allows the difference between any
two factors to be estimated.

The drawback to this approach is that the high-order interactions between options (effects
due to multiple options being enabled) will not be discernible. Fortunately, this is not
usually a problem as these types of interactions are statistically rare. The degree to which
this happens is specified by the FFD’s resolution. A resolution 5 design ensures that the
main effects are not aliased with anything lower than 4th order interactions.

Using the Yates algorithm [19], the effect for any single or combination of factors can
be found from the data. This gives an estimate for how much this factor or interaction
affects the result of the experiment. The Mann-Whitney statistical test is used to determine
whether the factor represents a significant change in performance as detailed in [20] and [49].

All FFDs used were generated by the statistical program, R [50] (a statistical program-
ming language), using the FrF2 library [51].

James Pallister PhD 1st Year Report

18 Contributions

-f
s
c
h
e
d
u
le

-i
n
s
n
s

-f
s
c
h
e
d
u
le

-i
n
s
n
s
2

-f

p
e
e
p
h
o
le

2
-f

tr
e
e
-p

re
-f

c
s
e
-f

o
ll
o
w

-j
u
m

p
s

-f
o
p
ti

m
iz

e
-s

ib
li
n
g
-c

a
ll
s

-f
g
c
s
e

-f
s
tr

ic
t-

o
v
e
rf

lo
w

-f
g
c
s
e
-l

m
-f

c
ro

s
s
ju

m
p
in

g
-f

c
a
ll
e
r-

s
a
v
e
s

-f
a
li
g
n
-l

o
o
p
s

-f
a
li
g
n
-l

a
b
e
ls

-f
th

re
a
d
-j

u
m

p
s

-f
in

d
ir

e
c
t-

in
li
n
in

g
-f

s
tr

ic
t-

a
li
a
s
in

g
-f

p
a
rt

ia
l-

in
li
n
in

g
-f

a
li
g
n
-j

u
m

p
s

-f
d
e
le

te
-n

u
ll
-p

o
in

te
r-

c
h
e
c
k
s

-f
in

li
n
e
-s

m
a
ll
-f

u
n
c
ti

o
n

s
-f

ip
a
-c

p
-f

s
c
h
e
d
-i

n
te

rb
lo

c
k

-f
re

o
rd

e
r-

b
lo

c
k
s

-f
tr

e
e
-b

u
il
ti

n
-c

a
ll
-d

c
e

-f
e
x
p
e
n
s
iv

e
-o

p
ti

m
iz

a
ti

o
n
s

-f
s
c
h
e
d
-s

p
e
c

-f
re

g
m

o
v
e

-f
d
e
v
ir

tu
a
li
z
e

-f
c
s
e
-s

k
ip

-b
lo

c
k
s

-f
ip

a
-s

ra
-f

a
li
g
n
-f

u
n
c
ti

o
n
s

-f
tr

e
e
-v

rp
-f

re
o
rd

e
r-

fu
n
c
ti

o
n
s

-f
tr

e
e
-t

a
il
-m

e
rg

e
-f

tr
e
e
-s

w
it

c
h
-c

o
n
v
e
rs

io
n

-f
re

ru
n
-c

s
e
-a

ft
e
r-

lo
o
p5

4

3

2

1

0

1

P
e
rc

e
n
ta

g
e
 t

im
e
/e

n
e
rg

y
,
re

la
ti

v
e
 t

o
 O

0

Significant

Energy

Time

(a) FDCT benchmark on the Cortex-M3 plat-
form. Individual options enabled at O2 are
listed.

-f
g
c
s
e
-a

ft
e
r-

re
lo

a
d

-f
tr

e
e
-v

e
c
to

ri
z
e

-f
tr

e
e
-s

lp
-v

e
c
to

ri
z
e

-f
p
re

d
ic

ti
v
e
-c

o
m

m
o
n
in

g

-f
ip

a
-c

p
-c

lo
n
e

-f
in

li
n
e
-f

u
n
c
ti

o
n
s

-f
u
n
s
w

it
c
h
-l

o
o
p
s

-f
ir

a
-l

o
o
p
-p

re
s
s
u
re

-f
tr

e
e
-l

o
o
p
-d

is
tr

ib
u
te

-p
a
tt

e
rn

s1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

P
e
rc

e
n
ta

g
e
 t

im
e
/e

n
e
rg

y
,

re
la

ti
v
e
 t

o
 O

0

Significant

Energy - MPU

Energy - core

Energy - DDR

Time

(b) 2D FIR benchmark on the Cortex-A8 plat-
form. Individual options enabled at O3 are
listed.

FFD results

The results from the FFD experiments provide additional evidence to back up the first
hypothesis, that execution time and energy are correlated.

Results showing the correlation between time and energy are shown in Fig. 3.3b. This
shows the main effect each optimisation has on the runtime and energy consumption, as
calculated by the FFD. A small percentage change is statistically significant because these
results are derived from a total of 2048 separate runs. This significance is calculated using
the Mann-Whitney test. The bracket above the bars indicates when the result satisfies the
following hypothesis: there is 95% certainty that the result represents a significant impact
on the energy consumption of the benchmark.

Fig. 3.4a highlights a discrepancy that occurred between execution time and energy con-
sumption, even for very similar optimisations. The first two options listed (-fschedule-insns
and -fschedule-insns2) both schedule instructions to reduce pipeline stalls. However the
latter option performs its scheduling pass after register allocation, whereas the first performs
it before. The option to schedule instructions after the register allocator can be explained
by recognising that the scheduling will reduce stall cycles, which have a below average en-
ergy consumption. Overall, this reduces time more than energy (removing cycles that are
below average energy will increase the average energy). The other option, however, is more
unexpected in that the energy is reduced by a higher proportion than execution time. Upon
further investigation this is partly due to fewer spill instructions being generated and partly
due to instruction set effects. The scheduling allows causes some register-specific instruc-
tions to be converted to ones that are able to access additional registers, further removing
the need to access memory.

Efficient SIMD Units An interesting effect is seen in 2D FIR for the Cortex-A8. The
execution time decreases more than the energy consumption up to O2. However, when en-
abling O3 the proportional decrease in energy is greater than execution time (a lower average
power). On further investigation, this is caused by the -ftree-vectorize optimisation hav-
ing an impact on energy consumption with no change in execution time (shown in Fig. 3.4b).
This option vectorizes loops, so that SIMD instructions can be inserted. We do not see a
performance boost due to the structure of the Cortex-A8 pipeline, where it is expensive to

PhD 1st Year Report James Pallister

Existing compiler optimisations 19

NEON Instruction
Dependencies

Continuous Power
Consumption

No Yes 168 mW
No No 195 mW
Yes Yes 158 mW
Yes No 159 mW

Table 3.1: Micro-benchmark results for multiplications on the NEON unit, with and without
inter-instruction dependencies.

copy results between the NEON unit and the standard registers.
Further investigation of the NEON SIMD unit was done using some simple tests consist-

ing of executing a single instruction many times. The results of these are shown in Tab. 3.1,
showing doing continuous multiplication on the NEON unit uses around 20% less power
than using the normal Cortex-A8 multiplier. When considering the similar number of cycles
to execute each type of multiply, this results in a reduction in energy consumption when
using the NEON unit. This is in line with what previous studies have found [11] and shows
that by using the hardware to its full capacity, the greatest energy savings can be achieved.

Conclusions

The first hypothesis of energy consumption and execution time being correlated in the
general case was found to be correct across many platforms and benchmarks. This was
first shown to be true by the high level results, showing only the overall optimisation levels.
The more detailed fractional factorial design runs also demonstrated this result, showing
that most optimisations had the same relative effect on energy and time. This result occurs
because the majority of optimisations focus on reducing the total amount of work performed
by the benchmarks — thus minimising both energy consumption and execution time.

By adding and subtracting individual flags on top of the whole optimisation levels we
have shown that a better set of flags exists, which can produce more optimal applications.
This validates our second hypothesis, giving results in line with much previous work.

The third hypothesis stated that it was possible to efficiently search the optimisation
space to gain information about the effectiveness of each optimisation. To perform this
we leveraged fractional factorial designs, allowing us to test each optimisation in a greatly
reduced number of runs. This method allowed us to explore complex effects seen on the
Cortex-A8, where the SIMD unit helped achieve lower energy consumption.

The fourth hypothesis of there being no optimisation which was effective for all bench-
marks and platforms was evaluated using fractional factorial designs (more detail available in
the full paper [A]). We were able to extract the most effective optimisations for each bench-
mark and platform pair and these results showed that there was no single optimisation that
was universally effective. Further analysis of adding and subtracting individual flags showed
that the optimisation space is chaotic, with optimisations interacting in unpredictable ways.

The compiler writer can use these results and the fractional factorial design method
to evaluate potential optimisation passes, ensuring that they perform well in a variety of
configurations. Until a method for resolving the interactions between optimisations is found,
it is envisioned that the developer could use this technique to eliminate optimisations that
are not having a positive effect on their application. This will speed up compilation time as
well as potentially improving the performance of their application.

James Pallister PhD 1st Year Report

20 Contributions
Sheet1

Page 1

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Genetic algorithm optimising for total energy

Benchmark: 2dfir

MPU

Core

DDR

Time

Total Energy

Iteration

F
ra

ct
io

n
 o

f O
3

 e
n

e
rg

y/
tim

e

Figure 3.5: Genetic algorithm targeting the Cortex-A8. Overall energy is minimised, break-
down of energy into MPU, core and DDR memory is shown, along with time.

3.1.2 Optimisation selection

As seen in the previous section, the choice of optimisations can have a large effect on energy
consumption. In this section the iterative elimination technique was performed on a variety
of benchmarks [17]. This lead to a range of improvements between 0 and 11%. The algorithm
was modified to retest flags which had been turned off, allowing it to consider a wider range
of flags. This gave a small improvement over iterative elimination for some benchmarks, as
it forming a type of hill-climbing algorithm. The results are shown below.

Benchmark % improvement
Iterative elimination Modified version

2dfir 8.3 8.3
blowfish 1.5 1.5
crc32 0.7 1.0
fdct 11.0 15.3
float matmult 1.9 2.1
int matmult 4.6 4.7
sha 0.3 0.3

3.1.3 Ordering of compiler optimisations

Some of the background work has been repeated, verifying their results. In particular, a
genetic algorithm was ran on ordering the compiler optimisations. The results of this are
shown in Figure 3.5. This result is in line with previous literature, showing that significant
savings over the best optimisation level can be made by choosing and ordering the optimisa-
tions. This particular run of the genetic algorithm reduced the energy consumption to 33%
of the O3 optimisation level and execution time to 37%.

The order of LLVM’s transformations is shown to have a large effect on the energy
consumption of a program in Figure 3.6. This graph shows how pairs of transformations
change the energy consumption compared to no transformations. There is a large variation
in energy consumption after just two transformations, from 8% increase to 12% decrease in

PhD 1st Year Report James Pallister

Memory alignment 21

Figure 3.6: Pairs of transformations from the LLVM compiler, ran on the 2DFIR benchmark.
Graph shows the change in energy compared to running no transformations.

0 16 32 48
0x00 0x10 0x20 0x30

Beginning of flash line

(a) The offset and size of the loop relative to
the beginning of the flash line.

0 16
0x00 0x10

Beginning of flash lineEnd of flash line

-16
-0x10

(b) The loop crossing two flash lines.

Figure 3.7: Diagrams of how loop alignment can be tested.

energy consumption. The work is ongoing and will eventually lead to a similar analysis of
ordering compile optimisations as was seen in Section 3.1.1.

3.2 Memory alignment

An optimisation for small embedded platforms, would typically overlook the alignment of
code and data in memory, due to the fact that both RAM and flash are single cycle access
across the memory space. However, the amount of energy consumed is not always equal,
with interactions between the flash, the SoC and the processor. In particular, embedded
flash memory is often divided into pages, lines and blocks, and changing the area of memory
being accessed has an associated energy cost.

The energy required by different areas of memory was tested by choosing loops of different
size and alignment, and measuring their energy consumption, as seen in Fig. 3.7a. In this

James Pallister PhD 1st Year Report

22 Contributions

0 32 64 96 128 160
Loop offset o∈Oloop

E
n
er

gy
 c

on
su

m
p
ti
on

 E
(T o,s

)
Ebase

Eloop(4)

Eline

Eline

4

Eloop(16)

Eline

Eline

16

Eloop(32)

Eline

Eline

32
Loop size (s∈Sloop)

4

16

32

Figure 3.8: Energy consumption profile as given in Eq. 3.4 for Sloop = {4, 16, 32} and
Sline = 128.

diagram, Sline is the size of the flash line, o is the offset of the loop in memory and s is the
size of the loop.

In the tests run, To,s, where o ∈ Oloop and s ∈ Sloop:

Oloop = {x|x = 0, 2, 4, .., 256} (3.1)

Sloop = {x|x = 8, 10, 12, .., 128} . (3.2)

Therefore the range of tests covered is given by:

To,s = Oloop × Sloop (3.3)

From the hypothesis that powering up a single line requires Eline joules, the energy
required by To,s is given below.

(3.4)E (To,s) = Ebase + Eloop(s) + Eline ·
⌈

(o mod Sline) + s

Sline

⌉
Ebase is the base energy required, and Eloop(s) is the energy that would be required by

the instructions in the loop with no flash lines powered up. This idealised model is shown
in Figure 3.8. This diagram shows how each energy value in the previous equation is likely
to appear when plotted.

The effect on energy of these characteristics can be seen in Fig. 3.9. This graph shows
the data as recorded above for several platforms. Interesting features are annotated and
discussed below.

A This is the effect of powering up an additional flash line, as predicted by the structure of
the underlying flash memory. This manifests as a spike in energy consumption when
the loop spans two flash lines (as shown in Fig. 3.7b). This happens when:

o mod Sloop > Sline − s (3.5)

These spikes are not seen on the PIC32MX5XX, as the prefetch cache masks the energy
consumption by having the cache line preloaded.

PhD 1st Year Report James Pallister

Superoptimisation 23

5

6

7

C
o
rtex

-M
0

A

6

7

8

C
o
rtex

-M
3

C

6

7

8

A
V

R
8B

9

11

13

M
IP

S

D

0 32 64 96 128 160 192 224 256
Loop offset, o, (bytes)

7.5

10.0

M
S
P

4
3
0F

0 32 64 96 128 160 192 224 256
Loop offset, o, (bytes)

30

35

40

M
S
P

43
0F

R

E
n
er

g
y
 p

er
 l
oo

p
 i
te

ra
ti
on

 (
n
J
)

Figure 3.9: The effect of loop alignment on energy consumption, for Sloop = 8, 10.

B Increases in energy consumption are seen when the loop starts in the last 8 bytes of a 16
byte block. This is seen on AVR8 on the Cortex-M3 to a lesser extent. This is also
a artefact of the flash structure: flash cells are grouped into blocks of 16 (AVR8) or
32 bytes (Cortex-M3). When the loop straddles multiple blocks, addition energy is
required to activate both blocks simultaneously.

C On the Cortex-M0 and Cortex-M3 platforms the alignment to a 4-byte boundary has a
large effect on the energy consumption. This effect occurs because the flash cell size
is 4-bytes.

D The MIPS and Cortex-M3 platforms don’t have large spikes at 128 bytes, but do at 256
bytes, suggesting that their flash line is 256 bytes long.

Item B discussed the effect of blocks in flash. This can be incorporated into the previous
equation by adding another term. The Eblock parameter is the amount of energy required
to enable a flash block and Sblock is the size of the flash block.

E (To,s) = Ebase + Eloop(s) + Eline ·
⌈

(o mod Sline) + s

Sline

⌉
+ Eblock ·

⌈
(o mod Sblock) + s

Sblock

⌉
(3.6)

There are a variety of effects seen across these platforms, work is continuing to explore
these and the interactions between processor architecture, SoC design and memory technol-
ogy. These effects could be exploited by a compiler optimisation to make sure that loops and
frequently executed areas of code do not cross these memory alignment boundaries. This
should reduce energy consumption in devices with embedded flash.

3.3 Superoptimisation

The section of work describes an ongoing attempt to create a superoptimiser targeting energy
consumption. The aim is to try and find the best possible sequence of code in terms of energy
consumption. A methodology similar to Bansal et al.[39] is followed, by finding equivalent

James Pallister PhD 1st Year Report

24 Contributions

Input
executable

CFG
Construction

CFG Interpretter

ELF

File

CFG

N-length

instruction

sequences

Fingerprint
Table

Hash:

register input/output

memory input/output

Instruction

Definition

Instruction

Enumerater

Canonial

register

generator

Interpretter

Superoptimizer

Hash:

register input/output

memory input/output

Optimization
Database

=?

Check the fingerprints

match. Use a SMT solver to

 guarentee equivalence

(a) First stage of the database creation process.

Test Harness

Test

Creation

Each instruction

sequence in

the database

Optimization
Database

GCC GDB
GDB

Server

Hardware
Energy

Measurement

Energy figure

for each sequence,

or data-parameterized

energy function

(b) Second stage of the database creation
process: measuring the energy of each se-
quence.

sequences of code, and them applying them to executables. This first requires a database of
equivalent instruction sequences is created.

The creation of the optimization database is split into two parts:

1. Finding functionally equivalent instruction sequences to the target sequence. This
phase harvests instruction sequences from an executable and inserts them into a fin-
gerprint hash table. The superoptimizer is then run, matching sequences against this
hash table. If the sequences are verified to be correct then they are entered into the
optimization database. This is shown in Figure 3.10a.

2. Costing the instruction sequences. This phase costs each instruction sequence in the
database by running it on hardware under a variety of test cases. This allows an energy
figure or an energy function, based on the data to be found. This phase is shown in
Figure 3.10b.

Once this optimization database has been created, it can be used in a peephole pass when
compiling the final application. This is simply a look up into the optimization database,
replacing the target sequence with the best found.

The optimization database stores all found sequences, along with their performance pa-
rameters. By storing several parameters, such as energy, execution time and sequence size,
trade-offs can be made when compiling a target application. The data points needed to be
stored by the optimization database are shown in Table 3.2.

As the database stores several different cost metrics, the resulting program can be bal-
anced between the three metrics. This allows maximal performance for a given energy level,
for example. It also allows the Pareto frontier to be calculated, highlighting which optimiza-
tions result in the best trade-off between code size, performance and energy consumption.

PhD 1st Year Report James Pallister

Superoptimisation 25

Field Name Description

Input Sequence The input sequence is the sequence that was harvested
from during the training process.

Replacement This is the sequence being scribed in this record of the
database — the sequence found by the superoptimizer
to be equivalent to the input sequence.

Energy
cost/function

This metric records the energy consumption of the re-
placement sequence, relative to the input sequence.

Execution time This records the execution time, relative to the input
sequence.

Code size This metric holds the code size of the replacement se-
quence.

Table 3.2: Fields required in the superoptimisation sequence database.

3.3.1 Pruning the search space

The size of the search space is given by the formula below:

S = |I|l (3.7)

where I is a subset of the instruction set and l is the length of the instruction sequence
to be generated.

It can be seen that the size of the space grows exponentially with l, therefore the com-
plexity of the functions that a superoptimizer is able to generate/ and the length of time
required to find a correct function is directly related to this search size. A search space
which has not been pruned results in an extremely long number of instruction sequences
that need to be checked before a correct one is found.

This section discusses several techniques that can be used to decrease the size of the
search space and their implications on the type of sequences that can be found. The pruning
techniques must be selected carefully: choosing a complex technique could greatly lower the
size of the search space, however if this is a costly technique to implement the overall time
to search the remaining space may be larger.

Canonical form

This technique was first introduced by Bansal et al. [39] exploiting the orthogonality of
registers in the instruction set. The instruction sequence is reduced to a unique form by
renaming the registers. The following table shows several single three-operand instructions
transformed into canonical form. All of the registers first appear in ascending order in the
transformed sequences.

add r1, r0, r0 −→ add r0, r1, r1

add r4, r0, r3 −→ add r0, r1, r2

add r0, r5, r2 −→ add r0, r1, r2

Transforming the instructions in this way greatly reduces the number of possibilities
there are to examine. For a single three-register instruction, assuming 16 registers, the
search space reduces from 163 = 4096 to 5 unique combinations. These combinations are
given below:

James Pallister PhD 1st Year Report

26 Contributions

input : L = list of previous numbers, initially (0, 0, ...)
input : k = maximum number of registers
input : n = |L|
output: L
output: Returns true if exhausted entire sequence.

1 for i← 0 to n− 1 do
2 if Li < max (Li+1...Ln) + 1 and Li < k then
3 Li = Li + 1 ;
4 return false ;

5 else
6 Li = 0 ;
7 end

8 end
9 return true ;

Algorithm 1: Algorithm to return the next register renaming.

add r0, r0, r0

add r0, r0, r1

add r0, r1, r0

add r0, r1, r1

add r0, r1, r2

This same technique can be applied to instruction sequences by ensuring that registers
are renamed so the registers first appear in ascending order.

mov r2, #1 mov r0, #1

add r5, r5, r2 add r1, r1, r0

sub r2, r3, r5 −→ sub r0, r2, r1

shl r1, r2, #1 shl r3, r0, #1

add r1, r1, #1 add r3, r3, #1

Renaming the registers in this way greatly reduces the number of unique instruction
combinations to examine. This renaming is equivalent to partitioning n elements into k
subsets, where n is the number of register ‘slots’ and k is the number of unique registers to
place in those slots. The number of possible combinations for a given n and k is given by
the Stirling numbers of the second kind [52]:

S(n, k) =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn (3.8)

The register renamings can be generated iteratively, from the previous renaming by using
the algorithm ‘Restricted growth strings in lexicographic order’ listed in [53]. This algorithm
is shown in Algorithm 1.

Using canonical form is valid if the registers are all orthogonal, which may not always be
the case for energy. If the energy cost for accessing a specific register is high for a particular
register then this transformation will mean that the most efficient instruction sequence may
not be found. Renaming the registers will change the number of bit-flips, potentially affecting
the energy. This effect is likely to be small, however, as previous work has determined these
effects to be at least an order of magnitude smaller than other effects [54].

PhD 1st Year Report James Pallister

Superoptimisation 27

Figure 3.11: Commutative register arrangement for simple and optimal forms.

Accessing registers causes a temperature rise in the CPU, which can also affect energy
consumption [55]. This renaming technique has the possibility of affecting the temperature
of the registers, changing their energy consumption characteristics.

Commutativity

Another possible technique to reduce the number of register combinations to explore for an
instruction sequence is by exploiting the commutativity of certain operations. The following
instruction are functionally equivalent:

add r0, r1, r2 ←→ add r0, r2, r1

By exploiting the fact that certain instructions have this property the search space can
be reduced. This effect is increased when combined with canonical form. Commutativity
can be combined with canonical form by only accepting register sequences which have the
commutative pairs in ascending order:

Invalid Valid

add r0, r1, r0 add r0, r0, r1

add r0, r2, r1 add r0, r1, r2

add r0, r1, r0 add r0, r0, r1

add r2, r3, r0 add r2, r0, r3

When canonical form is used, the reduction is search space size is dependent on the
positions of the commutative registers — Li > Lj occurs more frequently for large i and j
(in Algorithm 1), as the renaming ensures that registers are first used in ascending order. The
maximum reduction in search space can be achieved by placing the commutative registers
in the last positions. This difference between simple and optimal placement of commutative
register slots is demonstrated in Figure 3.11.

This diagram shows that to achieve the maximum search space reduction the commuta-
tive register pairs need to be placed in this highest register slots. A simple method of using
the registers in their defined order will not give the best results. The sizes of the search
spaces are given below, in Table 3.3.

These numbers are graphed in Figures 3.12a and 3.12b. The first graph shows the overall
search spaces for three-operand instructions without any reduction, using canonical form,

James Pallister PhD 1st Year Report

28 Contributions

N Canonical form Simple Optimal

1 5 4 4
2 203 110 99
3 21,147 7,301 5,865
4 4,213,597 894,904 644,417
5 1,382,958,545 176,869,540 114,514,772

Table 3.3: Size of the search space for instruction sequence length N of a single type of
instruction with various reduction strategies.

(a) Size of search space (b) Percentage of full search space

Figure 3.12: These graphs show how the size of the search space changes with increasing
length instruction sequences for various method of reduction.

and then two possible reductions exploiting commutativity. The second graph shows the
size of the search space after commutativity reductions, compared to canonical form.

From these graphs it can be seen that a significant reduction is given only using instruc-
tion sequences in canonical form, with small additional reductions by adding commutativity
on top of this.

The selection of commutative instructions must be done with care, as there are often
subtle restrictions on the operands that may be taken. One example may be where there is
a subset of registers that may be accepted by one operand. Swapping the registers also has
some similar impacts as canonical form — there could be a different pattern of switching
behaviour which would affect the energy consumption.

This techniques relies on operations being truly commutative. Some operations, such as
IEEE 754 floating point addition and multiplication are not necessarily commutative. The
effectiveness of applying these rules is then limited by the number of operations available.
This could be as few as just the addition, multiplication and several bitwise operators.

Dead code

This technique involves analysing the generated instruction sequence for dependencies that
would have been eliminated in fully optimised code.

PhD 1st Year Report James Pallister

Superoptimisation 29

Figure 3.13: Reduction in search space achievable with dead code elimination.

Read from uninitialised register.
The number of registers in use, and used by the input sequence is known, therefore if
the sequence reads from a register that has not been assigned to yet, it can be excluded.

Dead code elimination.
This technique removes code that is never used by the output. The instruction se-
quences is excluded from the search if it produces a result which is never read in the
sequence, or required as an output from the sequence. As the instruction sequence
produces a redundant result, an optimal instruction sequence would not have this
instruction.

Filtering the instruction sequences in this way makes the size of the search space depen-
dent on the number of inputs and outputs required by the target function. In the following
example, the line highlighted contains a write to r1 which is never used before being over-
written, so could be considered a non-optimal sequence.

Input: r0, r2, Output: r0

add r1, r0, #0x10

sub r1, r2, r0

and r0, r1, r2

Similarly, the code sequence can be considered non-optimal if the sequence produces an
output that is not required. In the code below, the last statement writes to r1, which is not
required as an output of this sequence.

Input: r0, r2, Output: r0

add r1, r0, #0x10

James Pallister PhD 1st Year Report

30 Contributions

sub r0, r2, r1

and r1, r0, r2

A sequence can also be considered invalid if it uses a registers which is not live at the
point of entry to the code. This can be found from liveness analysis of the surrounding code.
In the code below, the register r3 is not live on entry to this section of code, so its use makes
the sequence invalid.

Input: r0, r1, Output: r0

add r0, r0, #0x10

sub r0, r3, r1

and r0, r1, r0

The amount of the search space that can be saved by exploiting deadcode is shown in
Fig 3.13. This graph shows the dependency on number of inputs to the instruction sequence.

3.4 Benchmarking energy consumption

This section discusses a benchmark suite designed to measure energy consumption. This
works is available as a preprint [B].

Benchmarking is frequently used to gain an idea of how a system will perform during
general use, when the specific environment cannot be reproduced at design-time. This gives
designers feedback on how their system will perform and where performance is lacking.
Typically, one benchmark cannot exercise all aspects of a target, leading to suites of bench-
marks. Each benchmark tests a combination of areas of the hardware. This separation of
benchmarks allows the designer to see which parts of the hardware perform the best.

There are few freely available benchmark suites for deeply embedded systems and none
exist which are designed to allow energy consumption to be measured. Existing suites, such
as MiBench [56], MediaBench [57], LINPACK [58] and Dhrystone [59] are all targeted to-
wards larger desktop-based applications, with significant compute power. This is due to their
emphasis on measuring performance, as opposed to energy efficiency. Most assume a host
operating system is present, which may not be true on an embedded system. Furthermore,
when analysing energy consumption, having to account for the operating systems effect on
the result is non-trivial. These benchmarks — while in theory are portable — have signif-
icant difficulties running unmodified on embedded platforms. There are a variety of issues
that cause these difficulties, such as lack of an OS, lack of a storage system, small memory
size and run-time scalability. The issue of run-time scalability only occurs with a diverse
range of platforms — large differences in clock speed and microarchitecture may mean that
without scaling down a benchmark it is infeasible to run it on less powerful platforms.

A new set of benchmarks has been created — the Bristol Energy Efficiency Benchmark
Suite (BEEBS) [C] — modified from popular benchmark suites, and their use justified for
benchmarking energy consumption. The benchmark suite is designed to expose the processor
and memory’s performance, with other factors such as I/O and peripherals excluded for
portability. The selection was designed such that the benchmarks would be portable, to
expose the changing in energy consumption when exercising the platform in different ways,
such as with memory verses arithmetic intensive computation. The benchmarks are intended
to be run on the bare metal with no host operating system.

PhD 1st Year Report James Pallister

Benchmarking energy consumption 31

Name Source B M I FP License Category

Blowfish MiBench L M H L GPL Security
CRC32 MiBench M L H L GPL Network, telecomm
Cubic root solver MiBench L M H L GPL Automotive
Dijkstra MiBench M L H L GPL Network

FDCT WCET H H L H None† Consumer

Float Matmult WCET M H M M None† Automotive, consumer

Integer Matmult WCET M M H L None† Automotive
Rjindael MiBench H L M L GPL Security
SHA MiBench H M M L GPL Network, security

2D FIR DSPstone H M L H None† Automotive, consumer

Table 3.4: Benchmarks selected, and the categories they fit in. Legend in Table 3.5.
† Redistributed under the GPL.

Key Description

L Low
M Medium
H High

B Branching
M Memory intensity
I Integer pipeline intensity

FP FPU pipeline intensity

Table 3.5: Legend for the benchmark table

3.4.1 Benchmark selection

A set of benchmarks to tests all aspects of the target platforms is presented in this section.
The benchmarks were selected by defining a coverage matrix which included all the individual
benchmarks from following suites:

• MiBench

• DSPstone

• WCET

• Livermore Fortan Kernels

• Dhrystone

• MediaBench

The matrix (listed in full in Appendix A of [B]) also broadly evaluated other benchmark
suites for their suitability. Two sets of parameters are evaluated in this table — type of
operations performed by the benchmark and suitability for inclusion in the final suite. The
suitability for inclusion evaluates whether the benchmark should be included, based on what
the benchmark does, whether it will work on the target platforms and the effort required to
port it.

The type of operations was derived from examining the source of each benchmark and
roughly categorising it as to the types of operations it performs. This allows benchmarks
with similar properties to be excluded before a lengthy examination.

James Pallister PhD 1st Year Report

32 Contributions

blow
fish crc3

2
cub

ic
dijk

stra fdct

floa
t_m

atm
ult

int_
ma

tmu
lt
rijn

dae
l sha 2df

ir
0

20

40

60

80

100

Pe
rc
en

ta
ge

 o
f i
ns
tr
uc
tio

ns

Integer
Floating point
Memory
Branch
Other

BEEBS instruction distributions - Epiphany

(a) BEEBS Instruction distribution for the
Epiphany platform.

blow
fish crc3

2
cub

ic
dijk

stra fdct

floa
t_m

atm
ult

int_
ma

tmu
lt
rijn

dae
l sha 2df

ir
0

20

40

60

80

100

Pe
rc
en

ta
ge

 o
f i
ns
tr
uc
tio

ns

Integer
Memory
Branch
Other

BEEBS instruction distributions - XMOS

(b) BEEBS Instruction distribution for the
XMOS platform.

Benchmarks with a high suitability and a minimal set covering suitably different types
of operations were selected to be included in the final suite (shown in Table 3.4). The types
of operations are listed were calculated from a combination of inspecting the source code
and from the instruction traces generated. This is shown in the table under the following
columns:

• Branching.

• Memory.

• Integer.

• Floating Point.

The final list of chosen benchmarks is shown in Table 3.4.

3.4.2 Benchmark analysis

This section provides a concrete analysis of all the chosen benchmarks by collecting their
instruction traces across three of the platforms. From these graphs, the instructions can be
categorised to demonstrate that each benchmark performed a different distribution of oper-
ations. Figures 3.14a, 3.14b and 3.15a show the instruction distributions for the Epiphany,
XMOS and ARM Cortex-M0 (Thumb instruction set) platforms respectively. The ‘Other’
category of instructions contains miscellaneous control instructions that do not fit into other
categories (for example, interrupt control on the Epiphany platform).

Overall these results show that the benchmarks give a good spread of different distribu-
tions of instruction types.

Integer operations are the most common type of instruction in almost every benchmark.
Across the platforms, the distributions are similar, with small variations due to the underly-
ing instruction set. For example, there are a larger percentage of mov-type instructions in the
Epiphany results because there are several predicated mov instructions (moveq, movlt, etc).
This reduces the need for conditional branches, so this category decreases in proportion.

Epiphany is also the only platform in the subset chosen which has hardware support for
floating point. For the other platforms, software emulation is used. On the XMOS platform
this manifests in extra branch and memory instructions, whereas for the ARM platform
the proportion of integer operations rises. These differences are due to different emulation
strategies used.

The ARM traces follow the same general trend as the traces for XMOS and Epiphany,
however with overall less memory operations. This is due to the ARM processor having

PhD 1st Year Report James Pallister

Benchmarking energy consumption 33

blow
fish crc3

2
cub

ic
dijk

stra fdct

floa
t_m

atm
ult

int_
ma

tmu
lt
rijn

dae
l sha 2df

ir
0

20

40

60

80

100

Pe
rc
en

ta
ge

 o
f i
ns
tr
uc
tio

ns

Integer
Memory
Branch

BEEBS instruction distributions - ARM

(a) BEEBS Instruction distribution for the
ARM Cortex-M0 platform.

Shunt
resistor

Power
monitor

Power
loggerProcessor

(b) Hardware setup to measure the power of
the processor under test.

Type Platforms (%) Benchmarks (%)
Epiphany XMOS ARM

I 30 26–77 28–68 37–79
FP – 0–49 – –
M 30 10–30 17–43 6–34
B 29 1–20 1–30 1–42

Table 3.6: Variation in instruction distributions between the platforms and between the
benchmarks.

support for the ldm and stm instruction allowing multiple accesses to memory in a single
instruction. These instructions are used extensively in function prologues and epilogues to
save and restore registers.

The integer instruction category is the largest group in almost every case, for all platforms
and benchmarks. This comes from the integer category covering the largest number of types
of instructions, as it groups arithmetic, register copying and bit-wise operations.

These benchmarks show a range of different quantities of each instruction, with similar-
ities across platforms. This makes the set of benchmarks ideal for use in energy profiling of
a system.

We see that for all platforms a given benchmark produces a similar instruction profile
(within 30% between all platforms). This is shown in Table 3.6, where the platforms column
shows the maximum variation between each platform for each instruction category. The
benchmark columns show the ranges of instruction proportions across the benchmarks on
that platform. Between benchmarks there is significant variation, therefore the suite explores
a wide range of input configurations in a consistent way between architectures.

3.4.3 Case study

The use of the benchmark suite is demonstrated through collecting power measurements
for each benchmark on each of the platforms. Linear regression is then used to assign an
average power dissipation to each class of instructions by considering the average power and
instruction distribution per benchmark.

The power of each platform was measured by instrumenting hardware as in Figure 3.15b.
This set-up allowed real measurements to be taken, rather than using an abstract power

James Pallister PhD 1st Year Report

34 Contributions

Power (mW)
Category Epiphany XMOS ARM

Integer 28 33 8.4
Floating Point 31 – –
Memory 20 35 9.3
Branching 40 35 6.8
Other 14 – –

Average 26 35 8.3

Average/MHz 65µW 88µW 170µW

Table 3.7: Power dissipation for each instruction category calculated by linear regression.

model for the processor.
The average power dissipation of each benchmark was measured on the three hardware

platforms. Linear regression is applied, with the categorized instruction counts gathered
from the traces. This allows each category of instructions to be assigned an average power
dissipation. The results of this analysis are presented in Table 3.7. These are scaled results,
representing the cost of a single instruction per core/hardware thread (Scaled down by 16
for Epiphany and by 4 for XMOS).

Overall, the main difference in power dissipations is due to differing clock rates — XMOS
and Epiphany run at 400MHz and ARM at 48MHz.

From these results several conclusions can be drawn. For the ARM Cortex-M0, a memory
access is more costly than an arithmetic instruction, as is expected. The branch power
dissipation, disagrees with other results taken. The power measured when executing a
while(1); loop was found to be 11mW. This figure is higher than a memory access, due
to the instruction being loaded from flash as opposed to RAM. The discrepancy is due
to conditional branches having a lower power when the branch is not taken (further results
indicate that when a conditional branch is not taken, the power dissipation is roughly 4mW).

The XMOS results show memory operations are slightly more costly than arithmetic. The
identical cost for branching and memory access is due to the structure of the processor’s
pipeline: the final stage is a memory access which either does an instruction fetch or a
memory operation.

The results for the Epiphany exhibit the most variability, with a branch instruction
requiring almost twice the power of a memory access. We believe this is due to the longer
pipeline having to be flushed, then new instructions fetched. A floating point operation also
takes more power than an integer instruction — this is attributed to the larger complexity
of an FPU.

PhD 1st Year Report James Pallister

4

Future work

4.1 Loop alignment in embedded devices

Many embedded devices use embedded flash as their non-volatile memory storage. The
structure of flash in these devices has not be exploited to reduces the energy consumption
of applications in most cases. In particular, when the program has hot loops which are
incorrectly aligned the energy consumption is up to 15% higher than when the loops are
correctly aligned.

Initial analysis over a range of platforms suggests that the savings are between 5 and
15% for aligned vs. unaligned loops (Section 3.2).

4.2 Effect of different memory technologies

It is cheaper to execute out of RAM instead of flash. Most of the current work in scratch
pad memory has excluded deeply embedded devices, because the time to access both flash
and RAM is single cycle. This has led previous studies to target larger memory hierarchies,
considering performance rather than energy cost. Therefore, can we analyse the loops in
a program and automatically copy the hot areas of loops to RAM, as a compilation post
process?

4.3 Vector unit exploration

As seen in previous work, using the vector unit is more efficient than other functional units
in the processor. Explore whether this is the case in other platforms, and whether it can be
exploited by compilers to reduce energy consumption.

4.4 Other ideas

This section lists other potential ideas or topics that could be explored.

Hardware flash shadowing As it is costly to execute out of flash, shadow specified parts
of flash in an execution buffer. The shadowing would be specified by an instruction,
and instructions would be executed from this buffer. This allows loops to be held in
more energy efficient RAM, instead of executed out of memory.

36 Future work

Optimisation ordering Can the optimisation ordering space be explored with a technique
similar to fractional factorial designs?

Energy data modelling How can a model account for potentially significant changes in
energy consumption based on the data being used by the instructions? How can we
model this without knowing exactly what data will be used by a program?

Cache energy modelling Can a cache energy model be constructed from empirical energy
measurements?

Superoptimization Does superoptimization for energy consumption produce different op-
timal sequences than if targeting code size or performance? If different code sequences
are found, how different are they? Is it algorithmically different to the optimal code
for performance? Is the optimal sequence dependent on the input data? Do different
algorithms arise from different data?

Polling vs. interrupts Under what conditions is an interrupt driven system more energy
efficient than a polling based one. Are there cases where polling uses less energy?

JIT for energy efficiency Is it possible to use Just In Time compilation on embedded
platforms, to dynamically optimise for energy consumption?

PhD 1st Year Report James Pallister

5

Conclusion

This report has covered a variety of techniques that the compiler can implement to reduce
energy consumption. Key to testing all of these was the development of a benchmark
suite (BEEBS, Section 3.4) designed to expose the energy consumption characteristics of
the processor it was running on. This benchmark suite consisted of 10 benchmarks, each
carefully selected to test a wide range of behaviour on the target system.

An analysis of existing compiler optimisations was carried out (Section 3.1.1). This found
that for most existing optimisations, energy consumption was improved in proportion to
execution time, mainly as a result of fewer instruction being executed. However, it was also
noted that all of the optimisations examined were created for performance reasons, with their
energy benefit being a side effect. It was shown that the default set of optimisations could
be improved upon, and that in many cases there were optimisations that had a detrimental
effect on the energy consumption.

In some cases an optimisation was found to improve the energy consumption more than
the execution time. In the two cases that were investigated, one cause was the reduction
in memory operations (resulting in lower energy consumption, as predicted by the related
work). The other case resulted from the multiplier in the NEON vector unit being more
energy efficient than the Cortex-A8 core’s multiplier and the optimisation made use of this
functional unit.

The analysis concluded that there was no single set of optimisations which could be
applied to all platforms and all benchmarks to result in good performance. This highlights
the need for the compiler to be smart about the optimisations it chooses to apply.

Preliminary work was carried out with the ordering of compiler optimisations. Initial
results suggest that the ordering of compiler optimisations can provide an even greater
benefit than just optimisation selection. However, it is much more challenging to explore
the optimisation ordering space, due to its large and unbounded nature.

A previously unconsidered effect from executed code out of flash was identified in Sec-
tion 3.2. This explored devices with embedded flash, noting that when loops crossed certain
boundaries in memory the energy usage increased. This is due to the structure of flash
memory, and the need to power up additional bits of circuitry. This has the potential to be
developed into an energy saving optimisations. Other optimisations to reduce energy con-
sumption are listed in the future work section (Section 4). These include intelligently copying
code into RAM for lower energy consumption and exploiting the vector units available in
the processor.

Superoptimisation was explored as a possibility for generating new optimisations (Sec-
tion 2.2.5). The superoptimiser harvests target instruction sequences from a set of bench-
marks, and fingerprints them. Instruction sequences are then generated iteratively and

38 Conclusion

checked for functionality matches against the harvested sequences. If they match, their
energy consumption is measured, and the pair of sequences is added to a database. This
database can then be used by a compiler to implement a peephole pass, choosing the most
energy efficient sequence of instructions. There is a very large space of instructions to search,
and techniques to prune this space have been developed.

All of these techniques will individually increase the energy efficiency of software running
on an embedded platform. However, it is unclear whether they will still be as effective when
combined together, and this is an avenue for further exploration. A method of evaluating
how frequently new compiler optimisations are effective was proposed in Section 3.1.1. By
using fractional factorial design to explore how a new compiler optimisation interacts with
existing ones, informed decisions can be made about which circumstances to enable the
optimisation.

Overall, the techniques discussed in this report represent a first step towards giving the
compiler the tools necessary to make a large scale effect the energy consumption of its target.
These methods will be developed further over the course of my PhD with the goal of uniting
them together. Each optimisation has a small effect when considered individually, but when
combined it is expected that a large impact on energy consumption could be made.

PhD 1st Year Report James Pallister

Own Publications

[A] James Pallister, Simon J. Hollis, and Jeremy Bennett. “Identifying Compiler Options to Min-
imise Energy Consumption for Embedded Platforms”. In: Computer Journal (2013).

[B] James Pallister, Simon Hollis, and Jeremy Bennett. “BEEBS: Open Benchmarks for Energy
Measurements on Embedded Platforms”. In: (2013). arXiv:1308.5174.

[C] James Pallister, Simon Hollis, and Jeremy Bennett. The BEEBS Benchmark Suite. 2013. url:
http://www.cs.bris.ac.uk/Research/Micro/beebs.jsp.

See Appendix B of a list of presentations given and other activities.

References

[1] M. R. Stan and W. P. Burleson. “Bus-invert coding for low-power I/O”. In: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 3.1 (Mar. 1995), pp. 49–58.

[2] Seungdo Woo, Jungmin Yoon, and Jihong Kim. “Low-power instruction encoding techniques”.
In: SOC Design Conference (2001).

[3] Peter Marwedel et al. “Fast, predictable and low energy memory references through architecture-
aware compilation”. In: ASP-DAC 2004: Asia and South Pacific Design Automation Confer-
ence 2004 (IEEE Cat. No.04EX753) 1 (2004), pp. 4–11.

[4] Stefan Steinke, Lars Wehmeyer, and Peter Marwedel. “Assigning program and data objects
to scratchpad for energy reduction”. In: Proceedings 2002 Design, Automation and Test in
Europe Conference and Exhibition. IEEE Comput. Soc, 2002, pp. 409–415.

[5] Lovic Gauthier et al. “Minimizing Inter-Task Interferences in Scratch-Pad Memory Usage for
Reducing the Energy Consumption of Multi-Task Systems Categories and Subject Descrip-
tors”. In: Proceedings of the 2010 international conference on Compilers, architectures and
synthesis for embedded systems. 2010.

[6] Xuan Guan and Yunsi Fei. “Register file partitioning and recompilation for register file power
reduction”. In: ACM Transactions on Design Automation of Electronic Systems 15.3 (May
2010), pp. 1–30.

[7] K Asanovic. “Energy-exposed instruction set architectures”. In: Work in Progress Session,
HPCA. January. 2000.

[8] Mark Jerome Hampton. “Exposing Datapath Elements to Reduce Microprocessor Energy
Consumption”. PhD thesis. Massachusetts Institute of Technology, 2001.

http://arxiv.org/abs/1308.5174
http://www.cs.bris.ac.uk/Research/Micro/beebs.jsp

40 References

[9] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. “Compilation techniques for low energy: an
overview”. In: Proceedings of 1994 IEEE Symposium on Low Power Electronics. IEEE, 1994,
pp. 38–39.

[10] Anil Seth, R. B. Keskar, and R. Venugopal. “Algorithms for energy optimization using pro-
cessor instructions”. In: CASES ’01 Proceedings of the 2001 international conference on Com-
pilers, architecture, and synthesis for embedded systems (2001), p. 195.

[11] Mostafa E. A. Ibrahim, Markus Rupp, and Hossam A. H. Fahmy. “Code transformations
and SIMD impact on embedded software energy/power consumption”. In: 2009 International
Conference on Computer Engineering & Systems (Dec. 2009), pp. 27–32.

[12] A. Parikh et al. “Instruction scheduling based on energy and performance constraints”. In:
Proceedings. IEEE Computer Society Workshop on VLSI. IEEE Comput. Soc, 2000, pp. 37–
42.

[13] L. N. Chakrapani et al. “The emerging power crisis in embedded processors: what can a poor
compiler do?” In: CASES ’01 Proceedings of the 2001 international conference on Compilers,
architecture, and synthesis for embedded systems (2001).

[14] Yun Cao and Hiroto Yasuura. “A system-level energy minimization approach using datapath
width optimization”. In: Proceedings of the 2001 international symposium on Low power elec-
tronics and design - ISLPED ’01. New York, New York, USA: ACM Press, 2001, pp. 231–
236.

[15] R. Soma and M. Pedram. “Fine-grained dynamic voltage and frequency scaling for precise
energy and performance trade-off based on the ratio of off-chip access to on-chip computation
times”. In: Proceedings Design, Automation and Test in Europe Conference and Exhibition
(2005), pp. 4–9.

[16] S. V. Gheorghita, Henk Corporaal, and Twan Basten. “Using iterative compilation to reduce
energy consumption”. In: Proceedings of the 10th Annual Conference of the Advanced School
for Computing and Imaging (2004).

[17] Zhelong Pan and Rudolf Eigenmann. “Fast and effective orchestration of compiler optimiza-
tions for automatic performance tuning”. In: International Symposium on Code Generation
and Optimization. ii (2006), pp. 319–332.

[18] Kingsum Chow and Youfeng Wu. “Feedback-directed selection and characterization of com-
piler optimizations”. In: Proceedings of the Second Workshop on Feedback-Directed Optimiza-
tion. 1999, pp. 1–10.

[19] George E. P. Box, William G. Hunter, and J. Stuart Hunter. Statistics for Experimenters:
An Introduction to Design, Data Analysis, and Model Building. John Wiley & Sons, 1978,
pp. 374–418.

[20] Tomasz Patyk et al. “Energy consumption reduction by automatic selection of compiler op-
tions”. In: 2009 International Symposium on Signals, Circuits and Systems. IEEE, July 2009,
pp. 1–4.

[21] Grigori Fursin et al. “Milepost GCC: machine learning enabled self-tuning compiler”. In:
International Journal of Parallel Programming (2011), pp. 1–31.

[22] John Cavazos et al. “Rapidly Selecting Good Compiler Optimizations using Performance
Counters”. In: International Symposium on Code Generation and Optimization (CGO’07).
Ieee, Mar. 2007, pp. 185–197.

[23] Prasad A. Kulkarni et al. “Evaluating heuristic optimization phase order search algorithms”.
In: International Symposium on Code Generation and Optimization. 2007.

[24] S. Kulkarni and John Cavazos. “Mitigating the compiler optimization phase-ordering prob-
lem using machine learning”. In: Proceedings of the ACM international conference on Object
oriented programming systems languages and applications (2012), pp. 1–16.

PhD 1st Year Report James Pallister

References 41

[25] Kenneth O Stanley. “Efficient Reinforcement Learning through Evolving Neural Network
Topologies”. In: Genetic and Evolutionary Computation Conference. 2002.

[26] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. “Optimizing general purpose
compiler optimization”. In: Proceedings of the 2nd conference on Computing frontiers - CF
’05. New York, New York, USA: ACM Press, 2005, p. 180.

[27] Suresh Purini and Lakshya Jain. “Finding good optimization sequences covering program
space”. In: ACM Transactions on Architecture and Code Optimization 9.4 (Jan. 2013), pp. 1–
23.

[28] J. S. Seng and D. M. Tullsen. “The effect of compiler optimizations on Pentium 4 power
consumption”. In: Seventh Workshop on Interaction Between Compilers and Computer Ar-
chitectures, 2003. INTERACT-7 2003. Proceedings. (2003), pp. 51–56.

[29] Mostafa E. A. Ibrahim, Markus Rupp, and S. E.-D. Habib. “Compiler-based optimizations im-
pact on embedded software power consumption”. In: 2009 Joint IEEE North-East Workshop
on Circuits and Systems and TAISA Conference. Ieee, June 2009, pp. 1–4.

[30] Madhavi Valluri and L. K. John. “Is compiling for performance == compiling for power?”
In: Proceedings of the 5th Annual Workshop on Interaction between Compilers and Computer
Architectures (2001).

[31] David Brooks, Vivek Tiwari, and Margaret Martonosi. “Wattch: a framework for architectural-
level power analysis and optimizations”. In: Proceedings of the 27th Annual International
Symposium on Computer Architecture (2000).

[32] J. Ayala and M. López-Vallejo. “Improving register file banking with a power-aware unroller”.
In: Proceedings of PARC (2004).

[33] YongKang Zhu et al. “The energy impact of aggressive loop fusion”. In: Proceedings of the
13th International Conference on Parallel Architectures and Compilation Techniques. 2004.

[34] B. Kim, Y. Cho, and J. Hong. “An Efficient Function Inlining Scheme for Resource-Constrained
Embedded Systems”. In: Journal of Information Science and Engineering 874 (2012), pp. 859–
874.

[35] M. Toburen, T. Conte, and Matt Reilly. “Instruction scheduling for low power dissipation in
high performance microprocessors”. In: Proceedings of the 1998 Power Driven . . . (1998).

[36] Henry Massalin. “Superoptimizer - A Look at the Smallest Program”. In: ACM SIGARCH
Computer Architecture News (1987), pp. 122–126.

[37] Rajeev Joshi, Greg Nelson, and Keith Randall. “Denali : a goal-directed superoptimizer”. In:
Proceedings of the ACM 2000 Conference on Programming Language Design and Implemen-
tation. July. 2001, pp. 304–314.

[38] Sumit Gulwani et al. “Synthesis of loop-free programs”. In: ACM SIGPLAN Notices 47.6
(Aug. 2012), p. 62.

[39] Sorav Bansal and Alex Aiken. “Automatic generation of peephole superoptimizers”. In: ACM
SIGOPS Operating Systems Review 40.5 (Oct. 2006), p. 394.

[40] Eric Schkufza, Rahul Sharma, and Alex Aiken. “Stochastic superoptimization”. In: Archi-
tectural Support for Programming Languages and Operating Systems. New York, New York,
USA: ACM Press, 2013, p. 305.

[41] Vivek Tiwari et al. “Instruction level power analysis and optimization of software”. In: Journal
of VLSI Signal Processing Systems for Signal, Image, and Video Technology 13.2-3 (1996),
pp. 223–238.

[42] Stefan Steinke et al. “An accurate and fine grain instruction-level energy model supporting
software optimizations”. In: Proc. of PATMOS (2001).

James Pallister PhD 1st Year Report

42 References

[43] Yongxin Zhu, Weng-Fai Wong, and tefan Andrei. “An integrated performance and power
model for superscalar processor designs”. In: Proceedings of the 2005 conference on Asia
South Pacific design automation - ASP-DAC ’05 (2005), p. 948.

[44] N. Vijaykrishnan et al. “Energy-driven integrated hardware-software optimizations using Sim-
plePower”. In: Proceedings of the 27th annual international symposium on Computer archi-
tecture - ISCA ’00. c. New York, New York, USA: ACM Press, 2000, pp. 95–106.

[45] G. Qu et al. “Function-level power estimation methodology for microprocessors”. In: Proceed-
ings of the 37th . . . (2000), pp. 810–813.

[46] H Blume et al. “Hybrid functional- and instruction-level power modeling for embedded and
heterogeneous processor architectures”. In: Journal of Systems Architecture 53.10 (Oct. 2007),
pp. 689–702.

[47] Joseph Yiu. The Definitive Guide to the ARM Cortex-M3. 2nd. Newnes, 2010.

[48] The LLVM Compiler Infrastructure. url: http://llvm.org/.

[49] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. “Automatic selection of com-
piler options using non-parametric inferential statistics”. In: 14th International Conference
on Parallel Architectures and Compilation Techniques (PACT’05) (2005), pp. 123–132.

[50] Free Software Foundation. The R Project for Statistical Computing. 2013. url: http://www.r-
project.org/.

[51] U. Groemping and M. U. Groemping. FrF2: Fractional Factorial designs with 2-level factors.
2012. url: ftp://www.postfix.org/mirror/postfix/samag.200001/root/mirror/CRAN/
web/packages/FrF2/FrF2.pdf.

[52] Richard A. Brualdi. Introductory Combinatorics. 1st ed. Elvesier North-Holland, Inc., 1977,
pp. 119–120.

[53] Donald E. Knuth. The Art of Computer Programming, Volume 4A: Combinatorial Algorithms.
1st ed. Addison-Wesley, 2011, pp. 416–417.

[54] Steve Kerrison and Kerstin Eder. Energy modelling and optimisation of software for a hard-
ware multi-threaded embedded microprocessor. Tech. rep. Bristol: University of Bristol, 2013.

[55] Tiantian Liu et al. “Register allocation for simultaneous reduction of energy and peak tem-
perature on registers”. In: Design, Automation & Test in Europe. 2011.

[56] M. R. Guthaus and J. S. Ringenberg. “MiBench: A free, commercially representative em-
bedded benchmark suite”. In: IEEE International Workshop on Workload Characterization
(WWC-4). 2001, pp. 3–14.

[57] Jason E. Fritts et al. “MediaBench II video: Expediting the next generation of video systems
research”. In: Microprocessors and Microsystems 33.4 (June 2009), pp. 301–318.

[58] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. “The LINPACK Benchmark: past,
present and future”. In: Concurrency and Computation: Practice and Experience 15.9 (Aug.
2003), pp. 803–820.

[59] R. P. Weicker. “Dhrystone benchmark: rationale for version 2 and measurement rules”. In:
ACM SIGPLAN Notices 23.8 (1988).

PhD 1st Year Report James Pallister

http://llvm.org/
http://www.r-project.org/
http://www.r-project.org/
ftp://www.postfix.org/mirror/postfix/samag.200001/root/mirror/CRAN/web/packages/FrF2/FrF2.pdf
ftp://www.postfix.org/mirror/postfix/samag.200001/root/mirror/CRAN/web/packages/FrF2/FrF2.pdf

A

PhD plan

Date Activity
Jan - Mar 2014 Continue with experiments exploring memory alignment and the

effect of flash on energy consumption. Write up and submit to
CASES.

Mar - Apr 2014 In collaboration with Embecosm (MAGEEC project), evaluate
the energy efficient optimisation proposed, in combination with
other optimisations and its effect on multiple platforms. Write up
results.

Apr - Jun 2014 Explore the trade-off between flash and RAM for code execution.
Explore the link with previous work done on scratchpad memory
and the possibility of moving code into RAM.

Jun - Aug 2014 Using vector units with non-vectorised code is potentially more
energy efficient than the non vectorised functional units. Explore
this and possibly implement a compiler optimisation to utilise this.

Aug - Nov 2014 Further develop the superoptimizer. Create the optimisations
database and see if any interesting energy efficient instruction se-
quences are created.

Nov - Mar 2015 Explore how previously developed optimisations affect each other
when used simultaneously in the compiler. Explore how the com-
piler can intelligently choose which optimisations to apply.

Mar - Dec 2015 Write thesis

1st Jan 2016 Submit thesis

Presentations given and workshops attended 45

B

Activities

B.1 Presentations given and workshops attended

Name Description

EACO workshop The results for the compiler optimisations analysis was
presented at the EACO workshop.2012 October

NMI Every joule counts The results of the compiler optimisations analysis was
presented at NMI EJC.2012 November

OSHUG A talk focused on the hardware and software frameworks
behind measuring energy consumption was presented to
the Open Source Hardware User Group.

2012 November

LPGPU, PEGPUM The work on compiler optimisations was presented at the
low power GPU workshop.2013 January

ENTRA meeting I gave a talk about superoptimisation at the ENTRA
plenary meeting, to all partners.2013 May

GCC Cauldron, California A talk presenting the results of which compiler
optimisations worked for energy consumption was
presented back to the GCC compiler community.

2013 July

Preparing for Parallella I gave a talk on parallel programming and the Epiphany
chip.2013 July

OSHcamp/Wutheringbytes A talk was given on energy consumption and how to
measure it.2013 August

ORCONF
Attended a two-day meeting on the OpenRISC processor.

2013 October

Tallinn Attended a HiPEAC networking event for Computing
Systems week.2013 October

NMI Award Dinner Nominated for Young Engineer of the Year and invited by
ARM to the gala dinner.2013 November

James Pallister PhD 1st Year Report

46 Activities

B.2 Lab demonstrating

2012/2013

• CAD Group project

• Embedded systems integration

• Introduction to computer architecture

2013/2014

• Mathematical methods for computer scientists

• Embedded systems integration

• Introduction to computer architecture

B.3 Projects

MAGEEC The MAchine Guided Energy Efficient Compilation (MAGEEC) project re-
sulted from my work on compiler optimisations and I am heavily involved in a number
of work packages for the project. I have set up the measurement framework needed to
support the machine learning side of this project and work closely with the compiler
engineers in Embecosm to develop new optimisations targeting energy consumption.

ENTRA The ENergy TRAnsparency project aims to expose energy consumption to the
programmer without the programmer having to run the code. This is achieved by
combining energy models with static analysis of the program. I have been involved
with this project, suggesting benchmarks and optimisations methods. In future I will
be more involved with the optimisation part of the project.

PhD 1st Year Report James Pallister

	Introduction
	Related work
	Architectural modifications
	Compiler optimisations
	Optimizing for energy
	Selection
	Ordering
	Time-energy correlation
	Superoptimisation

	Energy modelling
	Low-level energy models

	Contributions
	Existing compiler optimisations
	Optimisation analysis
	Optimisation selection
	Ordering of compiler optimisations

	Memory alignment
	Superoptimisation
	Pruning the search space

	Benchmarking energy consumption
	Benchmark selection
	Benchmark analysis
	Case study

	Future work
	Loop alignment in embedded devices
	Effect of different memory technologies
	Vector unit exploration
	Other ideas

	Conclusion
	Own Publications
	References
	PhD plan
	Activities
	Presentations given and workshops attended
	Lab demonstrating
	Projects

